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ABSTRACT

In this report equations are derived for computing static and
dynamic aerodynamic dei vatives from forced oscillation wind tunnel
tests of volute-stabilized munition models. A linear model is used
for the pitching moment equation which considers small pitch angles
and small volute spring angles (or small perturbations), with no
shift in the center of gravity. The theory represents an extension
of the methods presented in Arnold Engineering Development Center
technical report AEDC-TR-69-208 and in Advisory Group for Aerospace
Research and Development report AGARDograph 121 to two degrees of
angluar freedom.

This document i!. subject to special export controls and

each transmittal to foreign governments or foreign

nationals may be made only with prior approval of the

Air Force Armament Laboratory (ATRA), Eglin AFB, Florida
132542.
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vi



LIST OF ABBREVIATIONS AND SYMBOLS (continued)

Pi point with coordinates xi yi zi

q dynamic pressure = 1/2 0 \V
2

Ri  separation of ith mass from origin of forebody axes

Rt  separation of volute hinge from origin of forebody axes

rt  -1 E mixti = separation of hinge origin and tail

mt tail

CG,positive

S reference area

t time

V free stream velocity

x y z body axes of forebody

xt Yt zt body axes of volute tail

p air density

A value of a determinant in Equation 6

6 pitch angle or pitch angle perturbation

6volute spring angle; angle at hinge between longitudinal
axes of forebody and volute spring, or perturbation of
this angle

4 ratio of damping to critical

a angle of attack

W angular frequency

w~n  undamped natural frequency of system

WV frequency of forced oscillation in vacuum

~0 amplitude of pitch oscillation

' vii

Ii



LIST OF ABBREVIATIONS AND SYMBOLS (concluded)

60 amplitude of volute angle oscillation

d' W2 01 phase angles

Superscripts

() vector

(") d( )/dt

Subscripts

w value with wind on

a aerodynamic value

v value under vacuum conditions

B forebody

t volute tail

i property of ith particle

spring
volute structural property of volute

viii



r
SE.CTION I

INTRODIICTION

Methods have been derived for computing model aerodynamic derivatives
from forced oscillation wind tunnel tests with one degree of angular
freedom (References 1 and 2). These are for small oscillations in pitch
angle of a rigid body. In this report these methods are extended to
cover small forced oscillations in the pitch angle of a body with an
elastic tail, as with a spring volute stabilized model.

The volute (Figure 1) is a light coiled spring device which stores
compactly. In action the coiled spring releases to form a cone-shaped
extension to a munition forebody. This rearward extension stabilizes the
munition and gives a preferred orientation in applications.

The analysis considers linearized equations of motion for small
"'.:.s of the pitch angle 0 and volute angle 6, or small perturbations
oi hese angles.

As the volute is a light, flexible spring, subjected in use to a
distributed load, it will be-d in nn elastic curve. For the purpose of
analyzing the inertia torques, this curve is idealized to be a straight
line. However, the results are applicable to the real volute, so long
as the volute angle 6 remains small, with Cos 6 approximately one and
no important shifts in the center of gravity of the model or the moments
of inertia. For the curved volute, the volute angle 6 may be defined as
the angle between the longitudinal axis of the forebody and the line
connecting the center of the volute hinge with the center of the rear

face of the volute spring. The angle 6 is taken positive when the volute
axis iies below the longitudinal axis of the forebody.

I,
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Figure 1. Volute-Stabilized Model with Positive Angles e and 6.
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SECTION El

THE SOLI]'ION OF AN EQUATION FOR FORCE)
OSCILLATION OF A LINEAR OSCILLATOR

4 Consider the equation:

*2
e + 2Cwne + n 0 : TCoswt; (o<C<I) (I)

4 The solution consists of a solution to the homogeneous equation

plus a particular solution. The solution to the homogeneous equation
is:

ac [K exp (- wt)] Cos(nt 1 + ) (2)

where K and 4 are functions of initial conditions. The particular
solution is:

e: ASinwt + BCoswt (3)

Upon substituting 0 = ec + e into Equation 1 and collecting coefficients,
one gets:

2 2
(Coswt) [-W B + 2wnw X + w B) + Simut

-,n n

2(4)
[-w A-2w n w B + w nA] =TCoswtn n To

2 2
-2wn wB + (-w + ) A 0 (5a)

2 2
(-w+ w B + 2w nA :T (5b)

3



0 (-2 + 2)n

T 2Cwnw -T (-w2+ n2 (6a)

-2w n w (-w + n2) A

(-W2 + wn 2) 2 w

A = -2T wnw/A (6b)

::- 2

If w = w n, then B = 0, A T/2C n , and the steady state value of 6

T~int
is e= = =2 = o Sinw t, where 6° is the amplitude.

2cw 2 0 n0

4



SECTION III

FORCED OSCILLATION AT SYSTEM UNDAMPED NATURAL FREQUENCY
(SINGLE DEGREE OF ANGULAR FREEDOM)

This section presents a portion of the theory developed in References
1 and 2 and is included in the interest of completeness. The pitching
moment equation may be taken as

I0-M ;-MoO = TCoswnt; wn -M e/1 (7)

where 0 is the perturbation of pitch angle, and the perturbation torque
is TCoswnt.

After transients have died out

e = 0o Sinwnt (8a)

o n CSwt (8b)

=- Ow 2 Sinwnt (8c)
o n n

Substituting into equation 7,

-M.O0,o T
0on (9a)

-M T/ow n  (9b)

Since the structural damping coefficient M6 is inversely
proportional to the frequency

Mw : M~a + M v(.n); M: . -M4'IV) (10)

Ma 5~ ~



2V -M . _ v ii)m = q SdL W m(1

Subscripts:

a = aerodynamic value

v = value under vacuum conditions

w = value with wind on

wn =(12a)

M M * M (12b)
6a 6w ev

C e jme MOv]Cm (12c)

For small amplitudes these are local values of (C __ + Cm) and Cm .

The values of e (and later 6) are taken as perturbation values, so that

Equation 7 may be used to obtain the derivatives over a range of angles
of attack.
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SECTION I V

INERTIA TERMS IN PITCHING MOMENT EQUATION FOR
VOLUTE STABILIZED MODEL WITH TWO DEGREES OF FREEDOM

The model is taken to be rotationally symmetric about the longitudinal
axes of the forebody and the tail. Consider a body axis system with origin

located on the pitch axis and the longitudinal axis of the forebody, x axis
forward along the longitudinal axis, y axis the pitch axis, and x,y,z a
right-hand set of axes. Let unit vectors aligned with these axes be
)_ 4. 4
i,j,k. Let Ri be a vector from the origin to the point Pi(xi,Yi,Zi),

Ri = xii~yij~zik, with mi the mass at Pi(xi, Yi, zi). The angular

velocity of the axes is: + .-.
Wo = Oj

The inertia torque terms are obtained as:

7 angular m6menttm)B dt B  R (13a)

For the forebody:

" Yi z " '  Yi 0

+. 4 4. * 4. -

R. W R. = [-xik+z i]

(angular momentum) = miRi Ri  (13b)
B

BB 2 2 t

(angular momentum) B m. x  + z )j - xyiYi-y i zik] (13c)
B



44

Prc' i symmetry, j m. (-xiYi) : mi (-yiZik) = 0

B B

(angular momenttm)B mi (xi 2 + zi 2 ) (13d)) B

Using the formula, dt = () - + H (WSj), one notes that

here '3@j 0 , as there is no rotation about the roll and yaw axes.

Therefore, (inertia torque) B = 6-mi(xi2+ zi 2 ) =
B B1 = (13e)

whee IB E- m, (x,2+ z. 2 )

B

To compute the inertia torque of the volute tail about the pitch axis,
let an auxiliary set of axes, xtYtZt, be located with oirgin at the tail

hinge center (intersection of longitudinal axes of the forebody and tail),
with xt forward along the longitudinal axis of the tail, yt parallel to
the pitch axis, and xt,Yt,Z t a right-hand set of axes. The xt axis is
inclined to the x axis by the volute angle 6, the volute longitudinal axis
is here idealized as a straight line. et the vector from the origin of
x,y,z to the origin of x tt,x t be (-Rti). Let unit vectors aligned with

xt,YtZ t be i.j.k. Then for a point P.z (xi'Yi'Zi) with mass mi located
on the tail, and with (xtytZt) coordinates Cxti,Yti,zti).

4.4. -
R. -R i + x tii + y j + z tk (14a)i t ti 1

4 . 4- -4. -4. . +.R. = "i) i + (Rij) j + (R.k)k (14b)

8



i

I R1  (-R t x tiCos6 + z t Sin6) i + y +t (-x tiSin6 + z tiCos6)k (14c)

Here

R 6(- tiSiSx ty =z6) (-x. =O6 z tiSnm+w0 i

'14d

R. ;C[s6) SW z *S) (-x .O6Sin6)k] +1t. ti ti ti t1

44

(anglar omenum R R.(14f)

(ang[lar moentu t mGs) + (- *Cos6-z Sin6)k]Ift it ti t

tt

(-x tiCos6-zt .Sin6)(-j)+ (-x ,-Sin6 z %jCos6)(.-x tiSin6 + z ticos6)j]

+ ef(-R t+X ticOS6 + z tiSin6) (-R t+X t.Cos6 + z ti Sin6) (1

.1 +(-xt.Sin6 z ztCOS6) (-x Sin6 + ztCOSO]j

tI titt



I
(amgular momentum)t j d m t[RtxtiCo36Rt ztiSin

(14h)

+x 2+ z .2]+4[R 2-2R x tCos6 + xti 2+zti 2 -2R z tSin6]

We note that - F mi6RtztiSin6 = -2Emi6RtztiSin6 = 0 because of symmetry.
t t

(angular momentum)t j[-RtxtiCos6+xtizti 1

t
(14i)

. 2 2 2
+O[Rt -2RtxtiCos6+xti +zti ]

(inertia torque) t =- (angular momentun)t (ISa)

2 2
(inertia torque)t = 3,Imi{[-RtxtiCos6 xt+ z

t
(lSb)

2 2+ 2 .2+[Rt 2R x Cos6+xt*+Z ] +4 [R x Sin6]+H[2R x .Sin62Rtxtti •i ti.tit

Assuming 6, 0, and 6 remain small, the last two brackets are higher
order terms and may be neglected.

"2 2

(inertia torq)t = j m[RtxtiCosS + xti + ti
t

(15c)
2 2 2

O[R -2R x Cos6 +x +z tit t ti ti ti]

10



i ttere

z

re- mRxiCs6 : mtRt"FtCos6

I t

2mi(xti 2  zti2 ) =t,hing et

f- m (2R x Cos6) = 2m R F Cos6
t i tti ttt

where5mi = mt and rt is the separation of the tail CG from the tail origin

at the hinge.

Abbreviating

2 2-[ C + + z2+ ] mtRtrtcos, + =Ktmi [- txti os  t' t t,hing e
t

. 'mi[Rt2-2RtxtiCos+ xt i+ z 1ti = mtRt 2+2mtRtjtCos6 + th = I

t t tii,hinge=

I+

B t

The inertia torque of the model is then given by

Inertia torque = 10 K 6 (16)

:1



SECTION V

WIND TUNNEL FORCED OSCILLATION AT UNDAMPED NATURAL FREQUENCY

OF SYSTEM WITH TWO DEGREES OF ANGULAR FREEDOM, LINEAR MODEL

The linearized pitching moment equation (1,2)may be taken as

10 + Kt6-M~6-M-M e-M 6 = TCoswt (17)

where e and 6 are perturbations of the pitch and volute angles, and the
perturbing moment is TCoswt. Here the unperturbed value of the volute
angle 6 is used in evaluating the constant values of I and Kt. For the

wind-on condition in the tunnel, the coefficients would have a subscript
w and for vacuum conditions, these coefficients would have a subscript v.

In the dynamic tests, the model is subjected to a forc'ng torque,
TCoswt. Assuming that 0 and 6 are positively damped (M;<O, M <O), the

transient solution to the homogeneous equation damps out and disappears
from the motion. The remaining motions of 6 and 6 are then sinusoidal
vibrations at frequency w. Equation 17 may then be split into separate
equations for 0 and 6 as follows:

IO-M;6-MoO = ACoswt + BSinwt (18)

KtM-M; M6 = (T-A) Coswt - BSinwt (19)

Here A and B remain to be determined.

The technique of forcing at the undamped natural frequency wn of

the system, where wn2 = -M6/I, is to vary w until e = .eo Sinwt

(=6oSinwnt); w n occurs when the phase angle between 6 and the forcing

moment is 900. This drives B to a value of zero.

For w = wn

12



0 =oSinwnt (here 6. is the amplitude)

: eoWnCoswnt (20)

0 :-eow~n2Sinwn t

Ie-M;-MOO = -Ms 0wnCos4)t =Aoswnt

M -A/0own (21)

Using the subscripts

a = aerodynamic value

w = value with wind on

v = value under vacuum conditions

on gets

M6w -A/eown (22)

M;a M;w M (23)

(Cmq + Cm;)= N;a (Vd2) (24)

Mea Mew-M Mew =-Wn2  (2S)

Cm = Me /qSd (26)a

The wind on vaJues of the coefficients will be known when the
quantity A has been evaluated and the vacuum values have been determined.

13



At the same time, 6 =6 oCos (Wnt + 2) where 6 0is the amplitude,
Sis the phase angle, and 6~ and q may he measured.

6=60COS(w lt +0)

6=-wn6 0Sin(% t+0) (27)

6 W n26 OCOS(Wn t+ )

K t M6 6-Mt 6 =(r-4A)cosw nt (28)

-K tw2 6Cos(wt+) + MW6nSi (wt*()

4M 6 60Cos(Wn t+0p) (T-A)osw t (29)

-KtW n2 6(Cos Cosw t-SinSinwj t) + M 6 0(Sin4Coswn t

(30)
+Cos Sjnw t)0-M660(Cos4Cosw nt-Sin Sinw nt) =(T-A)Cosw t

Upon equating the coefficients of Coswnt and Sinwnt on the two
sides of the equation, there results

Kt~n26Sin + M*W 6 Cos,+M66SinO 0

(31)
-Ktn 26 scos4 M~w6Sin -M 6 Cos T-A

On rearranging,

M*(w Cos4) + M(Snq -K KW 2 Sin4 32

14



2
M (w6 Sin ) -MIS(%Cos ) =(T-A) +Kt~l6Cs (33)

n twn %C0

whence

2
-Kt fl Sin4 Sind

)t n

(T-A) + Ktwln 26 Cos4 -6 Cos4 (34)
0

k 2

w 6Sin4 (T-A) + K w l6Ocos 35
-w

Oexpanding the determinants,

(T-A)Sin4f
M~= (36)

2
-[(T-A)Cos +4 K wn 6

tn0
M ISO(37)

Solving for (T-A),

2
wno o M;6SOI- tn 60

-- (38)
Sin Cosp

i5



In order to evaluate (T-A), one method would be a static determination
of MS so that the far right member of equation 38 could be evaluated.

Another method would be forced oscillation at the undamped natural fre-
quency of the volute. One has

M 6 M6 +M6spring Static Moment (39)

w a volute

whence

Cm = M6 /qSd (40)

A = T-(T-A) (41)

M = (T-A)Sin M + Mspring (42a)
w W n6o a volute

kSspring = v (42b)

volute

•m = (M6sp ) qSd = a Sd2) (43)
\ volute)

There remains the problem of obtaining M6v and MO. The model is

oscillated in the vacuum tunnel at the undamped natural frequency of the
system. The equation is

IO+Kt6-MO-M*6 -Me-M 6 = T1Coswt (44)

(similar to Equation 17)

16



I After the transients have d~ied out and w =wnv , one has

8 8 v nW

K t6-M; 6-M 6 6 (T 1-C)Cosw n t (46)

6 e 8Sinczn t

'O 6 0Coswn t (47)

v
2

8W 6 8Sinwn t

(-M6)vwn eo= C (48a)
V

n 0Cw 8 (48b)

At the same time, 6 =6 oCos(W t + 1) (by analogy with Equation 36)

(T1 -C)Sinsl

=~ (.50)
n no0

2

-[(TC)COs + Kt wn 6]0

17



2-oM 6v-Ktwn v 60; C = T-(TI-C)52)

Cos ¢1

The restoring moment coefficient of the spring volute Msv, may be

obtained by static experiment, or from forced oscillation at the undamped
natural frequency of the volute, so that C may be obtained from Equation
52, and M0 and M6v from Equations 48 and 49.

18



SECTION VT

WIND TUNNEL FORCED OSCILLATION AT A FREQUENCY OTHER
THAN wn; TWO DEGREES OF ANGULAR FREEDOM, LINEAR MODEL

The equation of motion may be taken as (same as Equation 17)

IOe+Kt 6-M~8- M1 -M 6-M6 = TCoswt (53)

After decay of the transients, there results

I6-M;e-M6O = ACoswt + BSinwt (54)

Kt6-M;-M66 = (T-A)Coswt - BSinwt (55)

where A&B remain to be evaluated.

The remaining motions are

= eoCos(wt+ 1 ) (56)

S= 6 Cos(wt+i 2 ) (57)
0

where i1, 2,o0 , and 60 may be evaluated from the test. Substituting

from Equation 56 into Equation 54

-I°W2 [Cos*,Coswt-Sin ,Sinwt] +MeOow[Sin ICoswt+Cosl'ISinwt]

j (58)
-M 0 [Cos~jCoswt-SinpiSinwt] = ACoswt+BSinwt

Go

Upon equating the coefficients of Sinwt and Coswt on the two sides of
Equation 58, there results

M;(WeoCosp) + M 0oSin~i : -Iw 0oSinp + B (59)

M;(weoSin l) -M (eoCosi) A + I 2 oS4 1  (60)

19
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2
-Iw oSinp+B 0oSinp

A+lw2 00oOS'pI  -eoOS~Pl

M= 2 _. (61)01 0

2

Ao0Sin l A+I 2eoS4l (62) :

M0 0

Meco~ -w i*+

-we
0

On expanding these determinants and simplifying there results

ASin*1 + BCos I
M6 =wo (63)

2

-[ACos p + I 2 -BSin l]

Me 0 (64)

0

Upon substituting from Equation 57 into Equation 55, there results

2
-KAow [Cos 2Coswt - Sin 2Sinwt]+M 60[SinP2Coswt + Cos 2Sinwt]

-M 6 [Cos2 Coswt - Sin 2 Sinwt]=(T-A) Coswt - BSinwt (65)

Upon equating the coefficients of Sinwt and Coswt on tbn two
sides of this equation and rearranging, one gets

20



M (W6COs" 2) + M66 Sin 2  -Ktw 2 SSinvp2-B (66)

I2
M. WSSinp -M660 Cos p 2 (T-A) + K t 6 OCos0 2  (67)

Solving,

2
-Kw Sinp -B 60 Sinp 2t 0 2

2
(T-A)+K t w 6 O0o0 2  -6 0 Cosip2

Mi (68)J -wS2

0

2

-'6 csin 2K w Costp2-

0A 2i (T-A)+Ktbw S
M (69)

I Simplifying,

I (T-A)Sin p2 BCos p

~ I M *(A S ( 7 0 )

0

1 21



Further infomation is needed to evaluate A and B. If M = M6  +
6w Sa

M6spring is known from static tests, Equation 71 is one equation involving

volute

A and B. Another relation is Equation 64, if M M + M and isMew ea  M an Meea

known from static tests, and Meiv s known from vacuum tests. Assuming

these values are known,

2ACos*I -BSinpl = -Me0 o0 -1w 00 (72)

-ACos 2 + BSin 2 = -M6o -TCos2-Kt 620 (73)

-M000- 1() 2 60 -Sin 1

-M6 6 o-TCos1 2-KtW 0 Sin 2  (74)

Sin(p2-l)

Cosp 1  -Me0-1(26 0

-Cos* 2  -M66oTCosP2-Kt 2 6o
(75)

B = -

Sin (2-i)
2 1

It may be observed that when w = wn, P1 = -90', B = 0, and (T-A) has

the same value as that given by Equation 38.

These values of A and B may be substituted into Equations 61 and 62
to evaluare Mw and Mew. The quantities M~v, Mev, and MKv may be obtained

as in Section V by vacuum tests at the system undamped natural frequency.

22



They may also be substituted into Equations 70 and 71 to get Mk and M6;

however, M and M have been assumed known in this application fromew 6w
static tests and vacuum tests.

The remaining equations for the aerodynamic derivatives are the
following:

M; = M,-Mv (- 2) (76)

a w v (25)

Cm = d (2)

0 6 (2S)

M a M M spring; Nspring (77)
volute volute

Cm = Ma (2V/qSd 2) (78)

M ~M -M
6 6 -spring (79)
a w volute

= M6 /qSd
Cm 6  (40)

a

23



The restrictions on the above solutions are

1. Configurations with symmetry about the pitch and yaw planes or
greater symmetry.

2. First order linear aerodynamics.

3. Small perturbations.

4. No significant changes in CG location or moments of inertia
during the motion.

5. System damping causes initial condition transients to decay.

I
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SECTION VII

CONCLUSION

Equations have been obtained to compute volute-equipped munition
model aerodynamic derivatives from forced oscillation wind tunnel tests

,1 of pitching motions. These methods represent extensions of the methods
outlined in References 1 and 2. They require certain additional values
of coefficients which may be obtained from static and vacuum tests in
the wind tunnel. Structural and aerodynamic contributions to pitch
damping and overturning moment coefficients may be computed separately
by the process outlined.

It is believed that within the limitations of the linear theory
outlined, these equations should serve in reducing data from forced

i oscillation wind tunnel tests of volute-stabilized models of munitions.

~2t
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